District Data Labs
Forward Propagation: Building a Skip-Gram Net From the Ground Up
Part 1: Skip-gram Feedforward
Editor's Note: This post is part of a series based on the research conducted in District Data Labs' NLP Research Lab. Make sure to check out the other posts in the series so far:
- NLP Research Lab Part 1: Distributed Representations
- NLP Research Lab Part 2: Skip-Gram Architecture Overview
Let's . . .
Posted in: machine learningnlppython
NLP Research Lab Part 2: Skip-Gram Architecture Overview
Editor's Note: This post is part of a series based on the research conducted in District Data Labs' NLP Research Lab. Make sure to check out NLP Research Lab Part 1: Distributed Representations.
Chances are, if you’ve been working in Natural Language Processing (NLP) or machine learning, you’ve heard of the class of . . .
Posted in: machine learningnlppython
NLP Research Lab Part 1: Distributed Representations
How I Learned To Stop Worrying And Love Word Embeddings
Editor's Note: This post is part of a series based on the research conducted in District Data Labs' NLP Research Lab.
This post is about Distributed Representations, a concept that is foundational not only to the understanding of data processing in machine learning, but also to the understanding of information processing and . . .
Posted in: machine learningnlppython
Beyond the Word Cloud
Visualizing Text with Python
In this article, we explore two extremely powerful ways to visualize text: word bubbles and word networks. These two visualizations are replacing word clouds as the defacto text visualization of choice because they are simple to create, understandable, and provide deep and valuable at-a-glance insights. In this post, we will examine how to . . .
Preparing for NLP with NLTK and Gensim
PyCon 2016 Tutorial on Sunday May 29, 2016 at 9am
This post is designed to point you to the resources that you need in order to prepare for the NLP tutorial at PyCon this coming weekend! If you have any questions, please contact us according to the directions at the end of the post.
In this tutorial, we will explore the features of the NLTK library for text processing in . . .
Modern Methods for Sentiment Analysis
Sentiment analysis is a common application of Natural Language Processing (NLP) methodologies, particularly classification, whose goal is to extract the emotional content in text. In this way, sentiment analysis can be seen as a method to quantify qualitative data with some sentiment score. While sentiment is largely subjective, sentiment . . .